Add like
Add dislike
Add to saved papers

Nanodelivery of scutellarin induces immunogenic cell death for treating hepatocellular carcinoma.

Hepatocellular carcinoma (HCC) causes the immunosuppressive tumor microenvironment (TME) resistant to current immunotherapy. The immunogenic apoptosis (currently termed immunogenic cell death, ICD) of cancer cells may induce the adaptive immunity against tumors, thereby providing great potential for treating HCC. In this study, we have confirmed the potential of scutellarin (SCU, a flavonoid found in Erigeron breviscapus) for triggering ICD in HCC cells. To facilitate in vivo application of SCU for HCC immunotherapy, an aminoethyl anisamide-targeted polyethylene glycol-modified poly(lactide-co-glycolide) (PLGA-PEG-AEAA) was produced to facilitate SCU delivery in this study. The resultant nanoformulation (PLGA-PEG-AEAA.SCU) remarkably promoted blood circulation and tumor delivery in the orthotopic HCC mouse model. Consequently, PLGA-PEG-AEAA.SCU reversed the immune suppressive TME and achieved the immunotherapeutic efficacy, resulting in significantly longer survival of mice, without inducing toxicity. These findings uncover the ICD potential of SCU and provide a promising strategy for HCC immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app