Add like
Add dislike
Add to saved papers

Extracellular vesicle heterogeneity and its impact for regenerative medicine applications .

Extracellular vesicles (EVs) are cell-derived membrane enclosed particles that are involved in physiological and pathological processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect has not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity, as well as the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. Significance Statement Within this review we discuss the differences in regenerative properties of EV subpopulations, and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations, and stress the importance of EV heterogeneity studies for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app