Add like
Add dislike
Add to saved papers

Design, synthesis, and study of novel phenethyl-based antitumor phospholipids downregulating p38 mitogen-activated protein kinase.

Phenethyl-based edelfosine-analogs with saturated, monounsaturated, or polyunsaturated alkoxy substituents on phenyl ring were designed as novel antitumor lipids modulating p38 MAPK. Evaluation of the synthesised compounds against nine panels of diverse cancer cells presented saturated and monounsaturated alkoxy-substituted derivatives as the most active than other derivatives. In addition, ortho -substituted compounds were more active than meta - or ortho -substituted compounds. They were potential anticancer agents against blood, lung, colon, CNS, ovary, renal, and prostate cancers but not against skin nor breast cancers. Compounds, 1b and 1a emerged as the most potential anticancer agents. Assessment of compound 1b impact on p38 MAPK and AKT confirmed it as an inhibitor of p38 MAPK but not AKT. In silico study suggested compounds 1b and 1a as possible binders to the lipid binding pocket of p38 MAPK. Overall, compounds 1b and 1a as novel broad spectrum antitumor lipids modulating activity of p38 MAPK for further development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app