Add like
Add dislike
Add to saved papers

Novel morphological mono-metallic substituted polyoxometalate immobilized 3-(aminopropyl)-imidazole photocatalysts for visible-light driven degradation: Anti-bacterial activity, membrane bacterial activity applications.

A novel keggin-type tetra-metalates substituted polyoxometalate was functionalized by 3-(aminopropyl)-imidazole (3-API) supporting a ligand substitution method. In this paper, polyoxometalate (POMs) (NH4 )3 [PMo12 O40 ] and transition metal substituted of (NH4 )3 [{PMIV Mo11 O40 }.(H2 O)] (M = Mn, V) are used as one of the adsorbents. The 3-API/POMs hybrid have been synthesized and used as adsorbent for the photo-catalysis of azo-dye molecule degradation after visible-light illumination as a simulated organic contaminant in water. The transition metal (M = MIV , VIV ) substituted keggin-type anions (MPOMs) were synthesized, which reveals the degradation of methyl orange (MO) of about 94.0 % and 88.6 %. Immobilizing high redox ability POMs as an efficient acceptor of photo generated electron, on metal 3-API. In the presence of visible light irradiation result reveals that 3-API/POMs (89.9 %) have incredibly achieved after certain irradiation time and at specific conditions (3)-API/POMs; photo-catalysts dose = 5mg/100 ml, pH = 3 and MO dye concentration = 5 ppm). As the surface of POM catalyst has strong absorption of azo-dye MO molecule engaged as a molecular exploration through photo catalytic reactant. From the SEM images it is clear that the synthesized POMs based materials and POMs conjugated MO have varieties of morphological changes observed such as flakes, rods and spherical like structures. Anti-bacterial study reveals that the process of targeted microorganism occur higher activity against pathogenic bacterium for 180 min of visible-light irradiation is measured in terms of zone of the inhibition. Furthermore, the photo catalytic degradation mechanism of MO using POM, metaled POMs and 3-API/POMs also has been discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app