Add like
Add dislike
Add to saved papers

Filter inference: A scalable nonlinear mixed effects inference approach for snapshot time series data.

Variability is an intrinsic property of biological systems and is often at the heart of their complex behaviour. Examples range from cell-to-cell variability in cell signalling pathways to variability in the response to treatment across patients. A popular approach to model and understand this variability is nonlinear mixed effects (NLME) modelling. However, estimating the parameters of NLME models from measurements quickly becomes computationally expensive as the number of measured individuals grows, making NLME inference intractable for datasets with thousands of measured individuals. This shortcoming is particularly limiting for snapshot datasets, common e.g. in cell biology, where high-throughput measurement techniques provide large numbers of single cell measurements. We introduce a novel approach for the estimation of NLME model parameters from snapshot measurements, which we call filter inference. Filter inference uses measurements of simulated individuals to define an approximate likelihood for the model parameters, avoiding the computational limitations of traditional NLME inference approaches and making efficient inferences from snapshot measurements possible. Filter inference also scales well with the number of model parameters, using state-of-the-art gradient-based MCMC algorithms such as the No-U-Turn Sampler (NUTS). We demonstrate the properties of filter inference using examples from early cancer growth modelling and from epidermal growth factor signalling pathway modelling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app