Add like
Add dislike
Add to saved papers

Growth and passivation of individual carbon nanoparticles by C2H2 addition at high temperatures: Dependence of growth rate and evolution on material and size.

Absolute kinetics for reactions of C2H2 with a series of ∼60 individual carbon nanoparticles (NPs) from graphite, graphene, graphene oxide, carbon black, diamond, and nano-onion feedstocks were measured for temperatures (TNP) ranging from 1200 to 1700 K. All the NPs were observed to gain mass by carbon addition under conditions that varied with feedstock but with large variations in initial growth rate. Long reaction periods were studied to allow the evolution of growth rates over time to be observed. Diamond NPs were found to passivate against C2H2 addition if heated above ∼1400 K, and the highly variable initial reactivity for carbon nano-onions was found to depend on the presence of non-onion-structure surface carbon. For graphitic and carbon black NPs, three distinct growth modes were observed, correlated with the initial NP mass (Minitial). Smallest graphitic and carbon black NPs, with masses <∼25 MDa, initially grew rapidly but also passivated quickly after adding <4% of Minitial. NPs in the 20-50 MDa range also passivated but only after multiple waves of fast growth separated by periods of low reactivity, with up to ∼11% total mass gain before passivation. The largest carbon black and graphitic NPs, with Minitial >50 MDa, grew rapidly and continuously, adding up to ∼300% of Minitial with no sign of rate slowing as long as C2H2 was present. The efficiencies for C2H2 addition and etching by O2 are strongly correlated, but the correlation changes as the NPs passivate. Growth and passivation mechanisms are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app