Add like
Add dislike
Add to saved papers

Carboxylic acid derivatives suppress the growth of Aspergillus flavus through the inhibition of fungal alpha-amylase.

Aspergillus favus ( A. flavus ) is a saprophytic fungus and a pathogen affecting several important foods and crops, including maize. A. flavus produces a toxic secondary metabolite called aflatoxin. Alpha-amylase (α-amylase), a hydrolytic enzyme produced by A. Flavus helps in the production of aflatoxin by hydrolysing the starch molecules in to simple sugars such as glucose and maltose. These simple sugars induce the production of aflatoxin. Inhibition of α-amylase has been proven as a potential way to reduce the production of aflatoxin. In the present study, we investigated the effect of selected carboxylic acid derivatives such as cinnamic acid (CA), 2, 4-dichlorophenoxyacetic acid (2,4-D), and 3-(4-hydroxyphenyl)-propionic acid (3,4-HPPA) on the fungal growth and for the α-amylase inhibitory activity. The binding potentials of these compounds with α-amylase have been confirmed by enzyme kinetics and isothermal titration calorimetry. Molecular docking and MD simulation studies were also performed to deduce the atomic level interaction between the protein and selected ligands. The results indicated that CA, 2,4-D and 3,4-HPPA can inhibit the fungal growth which could be partly due to the inhibition on fungal α-amylase activity.Communicated by Ramaswamy H. Sarma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app