Journal Article
Review
Add like
Add dislike
Add to saved papers

Self-assembly of DNA origami for nanofabrication, biosensing, drug delivery, and computational storage.

IScience 2023 May 20
Since the pioneering work of immobile DNA Holliday junction by Ned Seeman in the early 1980s, the past few decades have witnessed the development of DNA nanotechnology. In particular, DNA origami has pushed the field of DNA nanotechnology to a new level. It obeys the strict Watson-Crick base pairing principle to create intricate structures with nanoscale accuracy, which greatly enriches the complexity, dimension, and functionality of DNA nanostructures. Benefiting from its high programmability and addressability, DNA origami has emerged as versatile nanomachines for transportation, sensing, and computing. This review will briefly summarize the recent progress of DNA origami, two-dimensional pattern, and three-dimensional assembly based on DNA origami, followed by introduction of its application in nanofabrication, biosensing, drug delivery, and computational storage. The prospects and challenges of assembly and application of DNA origami are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app