Add like
Add dislike
Add to saved papers

Ψ and χ Angle Constrains at the C-Terminus Trp Position of the Melanotropin Tetrapeptide Ac-His-d-Phe-Arg-Trp-NH 2 Lead to Potent and Selective Agonists at hMC1R and hMC4R.

Melanocortin receptors (MCRs) are a family of G protein-coupled receptors that regulate important physiological functions. Yet, drug development targeting MCRs is hindered by potential side effects due to a lack of receptor subtype-selective ligands with bioavailability. Here, we report novel synthetic pathways to introduce Ψ and χ angle constraints at the C-terminus Trp position of the nonselective prototype tetrapeptide agonist Ac-His-d-Phe-Arg-Trp-NH2 . With these conformational constraints, peptide 1 (Ac-His-d-Phe-Arg-Aia) shows improved selectivity at hMC1R, with an EC50 of 11.2 nM for hMC1R and at least 15-fold selectivity compared to other MCR subtypes. Peptide 3 (Ac-His- p CF3 -d-Phe-Arg-Aia) is a potent and selective hMC4R agonist with an EC50 of 4.1 nM at hMC4R and at least ninefold selectivity. Molecular docking studies reveal that the Ψ and χ angle constraints force the C-terminal Aia residue to flip and interact with TM6 and TM7, a feature that we hypothesize leads to the receptor subtype selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app