Add like
Add dislike
Add to saved papers

A Computational Fluid Dynamics Investigation of a Flapping Hydrofoil as a Thruster.

Biomimetics 2023 March 26
The paper features a computational fluid dynamics study of a flapping NACA0015 hydrofoil moving with a combination of sinusoidal heaving and pitching. Several kinematic configurations are explored, varying sequentially pitch and heave amplitude, Strouhal number and phase angle, in an attempt to determine the influence of each parameter on the propulsive performance. To optimize efficiency the angle of attack should assume the highest value that also avoids the arise of the leading edge vortex generated in the dynamic stall state. At low Strouhal number optimum is reached at high heave amplitudes, which correspond to the configurations minimizing the hysteresis in the (Cy,Cx) plane. The same outcome in terms of hysteresis minimization has been verified to occur when optimal phase shift was considered. Differently, when the Strouhal number and the angle of attack become higher, to exploit efficiently the lift increment owed to dynamic stall it emerged the necessity of adopting low heave amplitude to improve separation resistance, avoiding the occurrence of deep stall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app