Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Bayesian model to identify multiple expression patterns with simultaneous FDR control for a multi-factor RNA-seq experiment.

It is often of research interest to identify genes that satisfy a particular expression pattern across different conditions such as tissues, genotypes, etc. One common practice is to perform differential expression analysis for each condition separately and then take the intersection of differentially expressed (DE) genes or non-DE genes under each condition to obtain genes that satisfy a particular pattern. Such a method can lead to many false positives, especially when the desired gene expression pattern involves equivalent expression under one condition. In this paper, we apply a Bayesian partition model to identify genes of all desired patterns while simultaneously controlling their false discovery rates (FDRs). Our simulation studies show that the common practice fails to control group specific FDRs for patterns involving equivalent expression while the proposed Bayesian method simultaneously controls group specific FDRs at all settings studied. In addition, the proposed method is more powerful when the FDR of the common practice is under control for identifying patterns only involving DE genes. Our simulation studies also show that it is an inherently more challenging problem to identify patterns involving equivalent expression than patterns only involving differential expression. Therefore, larger sample sizes are required to obtain the same target power to identify the former types of patterns than the latter types of patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app