Add like
Add dislike
Add to saved papers

Asymmetric Transfer Hashing With Adaptive Bipartite Graph Learning.

Thanks to the efficient retrieval speed and low storage consumption, learning to hash has been widely used in visual retrieval tasks. However, the known hashing methods assume that the query and retrieval samples lie in homogeneous feature space within the same domain. As a result, they cannot be directly applied to heterogeneous cross-domain retrieval. In this article, we propose a generalized image transfer retrieval (GITR) problem, which encounters two crucial bottlenecks: 1) the query and retrieval samples may come from different domains, leading to an inevitable domain distribution gap and 2) the features of the two domains may be heterogeneous or misaligned, bringing up an additional feature gap. To address the GITR problem, we propose an asymmetric transfer hashing (ATH) framework with its unsupervised/semisupervised/supervised realizations. Specifically, ATH characterizes the domain distribution gap by the discrepancy between two asymmetric hash functions, and minimizes the feature gap with the help of a novel adaptive bipartite graph constructed on cross-domain data. By jointly optimizing asymmetric hash functions and the bipartite graph, not only can knowledge transfer be achieved but information loss caused by feature alignment can also be avoided. Meanwhile, to alleviate negative transfer, the intrinsic geometrical structure of single-domain data is preserved by involving a domain affinity graph. Extensive experiments on both single-domain and cross-domain benchmarks under different GITR subtasks indicate the superiority of our ATH method in comparison with the state-of-the-art hashing methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app