Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

The Mechanics of (Poro-)Elastic Contractile Actomyosin Networks As a Model System of the Cell Cytoskeleton.

Cells can actively change their shapes and become motile, a property that depends on their ability to actively reorganize their internal structure. This feature is attributed to the mechanical and dynamic properties of the cell cytoskeleton, notably, the actomyosin cytoskeleton, which is an active gel of polar actin filaments, myosin motors, and accessory proteins that exhibit intrinsic contraction properties. The usually accepted view is that the cytoskeleton behaves as a viscoelastic material. However, this model cannot always explain the experimental results, which are more consistent with a picture describing the cytoskeleton as a poroelastic active material-an elastic network embedded with cytosol. Contractility gradients generated by the myosin motors drive the flow of the cytosol across the gel pores, which infers that the mechanics of the cytoskeleton and the cytosol are tightly coupled. One main feature of poroelasticity is the diffusive relaxation of stresses in the network, characterized by an effective diffusion constant that depends on the gel elastic modulus, porosity, and cytosol (solvent) viscosity. As cells have many ways to regulate their structure and material properties, our current understanding of how cytoskeleton mechanics and cytosol flow dynamics are coupled remains poorly understood. Here, an in vitro reconstitution approach is employed to characterize the material properties of poroelastic actomyosin gels as a model system for the cell cytoskeleton. Gel contraction is driven by myosin motor contractility, which leads to the emergence of a flow of the penetrating solvent. The paper describes how to prepare these gels and run experiments. We also discuss how to measure and analyze the solvent flow and gel contraction both at the local and global scales. The various scaling relations used for data quantification are given. Finally, the experimental challenges and common pitfalls are discussed, including their relevance to cell cytoskeleton mechanics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app