Add like
Add dislike
Add to saved papers

Anti-inflammatory therapy enables robot-actuated regeneration of aged muscle.

Science Robotics 2023 March 23
Robot-actuated mechanical loading (ML)-based therapies ("mechanotherapies") can promote regeneration after severe skeletal muscle injury, but the effectiveness of such approaches during aging is unknown and may be influenced by age-associated decline in the healing capacity of skeletal muscle. To address this knowledge gap, this work used a noninvasive, load-controlled robotic device to impose highly defined tissue stresses to evaluate the age dependence of ML on muscle repair after injury. The response of injured muscle to robot-actuated cyclic compressive loading was found to be age sensitive, revealing not only a lack of reparative benefit of ML on injured aged muscles but also exacerbation of tissue inflammation. ML alone also disrupted the normal regenerative processes of aged muscle stem cells. However, these negative effects could be reversed by introducing anti-inflammatory therapy alongside ML application, leading to enhanced skeletal muscle regeneration even in aged mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app