Journal Article
Review
Add like
Add dislike
Add to saved papers

Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection.

Talanta 2023 Februrary 29
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app