Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

Spontaneous Murine Model of Anaplastic Thyroid Cancer.

Anaplastic thyroid cancer (ATC) is a rare but lethal malignancy with a dismal prognosis. There is an urgent need for more in-depth research on the carcinogenesis and development of ATC, as well as therapeutic methods, since standard treatments are essentially depleted in ATC patients. However, low prevalence has hampered thorough clinical studies and the collection of tissue samples, so little progress has been achieved in creating effective treatments. We used genetic engineering to create a conditionally inducible ATC murine model (mATC) in a C57BL/6 background. The ATC murine model was genotyped by TPO-cre/ERT2; BrafCA/wt ; Trp53ex2-10/ex2-10 and induced by intraperitoneal injection with tamoxifen. With the murine model, we investigated the tumor dynamics (tumor size ranged from 12.4 mm2 to 32.5 mm2 after 4 months of induction), survival (the median survival period was 130 days), and metastasis (lung metastases occurred in 91.6% of mice) curves and pathological features (characterized by Cd8, Foxp3, F4/80, Cd206, Ki67, and Caspase-3 immunohistochemical staining). The results indicated that spontaneous mATC possesses highly similar tumor dynamics and immunological microenvironment to human ATC tumors. In conclusion, with high similarity in pathophysiological features and unified genotypes, the mATC model resolved the shortage of clinical ATC tissue and sample heterogeneity to some extent. Therefore, it would facilitate the mechanism and translational studies of ATC and provide an approach to investigate the treatment potential of small molecular drugs and immunotherapy agents for ATC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app