Add like
Add dislike
Add to saved papers

Construction and Modeling of a Coculture Microplate for Real-Time Measurement of Microbial Interactions.

MSystems 2023 Februrary 22
The dynamic structures of microbial communities emerge from the complex network of interactions between their constituent microorganisms. Quantitative measurements of these interactions are important for understanding and engineering ecosystem structure. Here, we present the development and application of the BioMe plate, a redesigned microplate device in which pairs of wells are separated by porous membranes. BioMe facilitates the measurement of dynamic microbial interactions and integrates easily with standard laboratory equipment. We first applied BioMe to recapitulate recently characterized, natural symbiotic interactions between bacteria isolated from the Drosophila melanogaster gut microbiome. Specifically, the BioMe plate allowed us to observe the benefit provided by two Lactobacillus strains to an Acetobacter strain. We next explored the use of BioMe to gain quantitative insight into the engineered obligate syntrophic interaction between a pair of Escherichia coli amino acid auxotrophs. We integrated experimental observations with a mechanistic computational model to quantify key parameters associated with this syntrophic interaction, including metabolite secretion and diffusion rates. This model also allowed us to explain the slow growth observed for auxotrophs growing in adjacent wells by demonstrating that, under the relevant range of parameters, local exchange between auxotrophs is essential for efficient growth. The BioMe plate provides a scalable and flexible approach for the study of dynamic microbial interactions. IMPORTANCE Microbial communities participate in many essential processes from biogeochemical cycles to the maintenance of human health. The structure and functions of these communities are dynamic properties that depend on poorly understood interactions among different species. Unraveling these interactions is therefore a crucial step toward understanding natural microbiota and engineering artificial ones. Microbial interactions have been difficult to measure directly, largely due to limitations of existing methods to disentangle the contribution of different organisms in mixed cocultures. To overcome these limitations, we developed the BioMe plate, a custom microplate-based device that enables direct measurement of microbial interactions, by detecting the abundance of segregated populations of microbes that can exchange small molecules through a membrane. We demonstrated the possible application of the BioMe plate for studying both natural and artificial consortia. BioMe is a scalable and accessible platform that can be used to broadly characterize microbial interactions mediated by diffusible molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app