Add like
Add dislike
Add to saved papers

A Simple and Efficient Method for Generating KO Rats Using In Vitro Fertilized Oocytes.

The development of ZFN, TALEN, and CRISPR/Cas9 systems has simplified the process of generating knockout (KO) and knock-in (KI) rats in addition to mice. However, in rats, an efficient genome editing technique that uses in vitro fertilized oocytes has not been established. Recently, we reported the stable generation of offspring from five standard strains of rats by superovulation and in vitro fertilization (IVF). Furthermore, genome-edited rats can be easily generated by electroporation. First, juvenile female rats are administered LHRH (luteinizing hormone-releasing hormone) to synchronize the estrous cycle and then AIS (Automatic Identification System) with PMSG (pregnant mare serum gonadotropin) before hCG (human chorionic gonadotropin) for superovulation. Sperm collected from a sexually mature male rat the following morning is then pre-cultured. Cumulus cell-oocyte complexes (COCs) are collected from female rats under anesthesia, and COCs are induced into a medium containing concentration-adjusted sperm. Thereafter, oocytes with two pronucleus are selected as fertilized oocytes. Next, fertilized oocytes are transferred into a glass chamber containing CRISPR ribonucleoprotein (RNP) complexes formed from gRNA and Cas9 protein. After electroporation, fertilized oocytes are then immediately transferred to culture medium. The next day, embryos are transferred into the oviduct of pseudopregnant female rats. Using the above method, offspring can be obtained 22 days after the day of embryo transfer. In this paper, we outline a method allowing simple and efficient generation of genetically modified rats without the need for technically difficult micromanipulation techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app