Add like
Add dislike
Add to saved papers

GABAergic neurons in the dorsomedial hypothalamus regulate states of consciousness in sevoflurane anesthesia.

IScience 2023 January 21
The neural inhibitory gamma-aminobutyric acid (GABA) system in the regulation of anesthetic consciousness is heterogeneous, and the medial hypothalamus (MH), consisting of ventromedial hypothalamus (VMH) and dorsomedial hypothalamus (DMH), plays an important role in sleep and circadian rhythm. However, the role of MH GABAergic neurons (MHGABA ) in anesthesia remains unclear. In this study, we used righting reflex, electroencephalogram (EEG), and arousal behavioral score to evaluate the sevoflurane anesthesia. Activation of MHGABA or DMHGABA neurons prolonged the anesthesia induction time, shortened the anesthesia emergence time, and induced EEG arousal and body movement during anesthesia; meanwhile, VMHGABA neurons activated only induced EEG changes during 1.5% sevoflurane anesthesia. Furthermore, inhibition of DMHGABA neurons significantly deepened sevoflurane anesthesia. Therefore, DMHGABA neurons exert a strong emergence-promoting effect on induction, maintenance, and arousal during sevoflurane general anesthesia, which helps to reveal the mechanism of anesthesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app