Add like
Add dislike
Add to saved papers

Dispersive solid-phase extraction of non-steroidal anti-inflammatory drugs in water and urine samples using a magnetic ionic liquid hypercrosslinked polymer composite.

In this work, Friedel-Crafts alkylation was successfully applied to prepare a magnetic ionic liquid hypercrosslinked polymer composite (Fe3 O4 @IL-HCP), which was subsequently employed as magnetic solid-phase extraction (MSPE) adsorbent for the isolation and enrichment of trace non-steroidal anti-inflammatory drugs (NSAIDs). The developed composite was comprehensively characterized using various techniques, with the results indicating that it possessed high saturation magnetization (39.44 em g -  1 ), large specific surface area (175 m2 g -  1 ), and high adsorption capacity for NSAIDs. The adsorption behavior and mechanisms were also investigated in detail. NSAIDs were adsorbed onto the Fe3 O4 @IL-HCP sorbent via a heterogeneous multilayer process consisting of hydrogen bonding and π-π and electrostatic interactions. Additionally, the composite's large surface area and multiple active sites enabled extraction equilibrium within 6 min. By coupling with high performance liquid chromatography (HPLC), the developed MSPE/HPLC method was applied for the determination of selected NSAIDs in water and urine samples. The developed method displayed wide linear ranges, low limits of detection (0.12-0.30 ng mL-1 and 0.15-1.5 ng mL-1 in water and urine samples, respectively), sufficient recoveries (92.8-109%), and good precision (relative standard deviations ≤ 4.6%). Thus, the findings of this work provide an appealing alternative for the extraction and determination of trace NSAIDs in environmental water and biological samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app