Add like
Add dislike
Add to saved papers

Analysis identifying minimal governing parameters for clinically accurate in silico fractional flow reserve.

BACKGROUND: Personalized hemodynamic models can accurately compute fractional flow reserve (FFR) from coronary angiograms and clinical measurements (FFR baseline ), but obtaining patient-specific data could be challenging and sometimes not feasible. Understanding which measurements need to be patient-tuned vs. patient-generalized would inform models with minimal inputs that could expedite data collection and simulation pipelines.

AIMS: To determine the minimum set of patient-specific inputs to compute FFR using invasive measurement of FFR (FFR invasive ) as gold standard.

MATERIALS AND METHODS: Personalized coronary geometries ( N = 50 ) were derived from patient coronary angiograms. A computational fluid dynamics framework, FFR baseline , was parameterized with patient-specific inputs: coronary geometry, stenosis geometry, mean arterial pressure, cardiac output, heart rate, hematocrit, and distal pressure location. FFR baseline was validated against FFR invasive and used as the baseline to elucidate the impact of uncertainty on personalized inputs through global uncertainty analysis. FFR streamlined was created by only incorporating the most sensitive inputs and FFR semi-streamlined additionally included patient-specific distal location.

RESULTS: FFR baseline was validated against FFR invasive via correlation ( r = 0.714 , p < 0.001 ), agreement (mean difference: 0.01 ± 0.09 ), and diagnostic performance (sensitivity: 89.5%, specificity: 93.6%, PPV: 89.5%, NPV: 93.6%, AUC: 0.95). FFR semi-streamlined provided identical diagnostic performance with FFR baseline . Compared to FFR baseline vs. FFR invasive , FFR streamlined vs. FFR invasive had decreased correlation ( r = 0.64 , p < 0.001 ), improved agreement (mean difference: 0.01 ± 0.08 ), and comparable diagnostic performance (sensitivity: 79.0%, specificity: 90.3%, PPV: 83.3%, NPV: 87.5%, AUC: 0.90).

CONCLUSION: Streamlined models could match the diagnostic performance of the baseline with a full gamut of patient-specific measurements. Capturing coronary hemodynamics depended most on accurate geometry reconstruction and cardiac output measurement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app