Add like
Add dislike
Add to saved papers

Hybrid Lamellar Superlattices with Monoatomic Platinum Layers and Programmable Organic Ligands.

Compared with layered materials such as graphite and transitional metal dichalcogenides with highly anisotropic in-plane covalent bonds, freestanding metallic two-dimensional (2D) films with atomic thickness are intrinsically more difficult to achieve. The omnidirectional nature of typical metallic bonds prevents the formation of highly anisotropic atomically thin metallic layers. Herein, we report a ligand regulation strategy to stabilize monoatomic platinum layers by forming a unique lamellar superlattice structure with self-assembled organic ligand layers. We show that the interlayer spacings and coordination environments could be systematically tuned by varying programmable molecular ligands with the designed length and structural motifs, which further modulate the electronic states and catalytic performances. The strategy can be extended for preparing lamellar superlattices with monoatomic metallic layers from silver and gold. Such general and delicate synthetic control provides an exciting model system for systematic investigation of the intriguing structure-property correlation of monoatomic layers and promises a molecular design pathway for heterogeneous catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app