Add like
Add dislike
Add to saved papers

Discovery of 2-Amino-7-sulfonyl-7 H -pyrrolo[2,3- d ]pyrimidine Derivatives as Potent Reversible FGFR Inhibitors with Gatekeeper Mutation Tolerance: Design, Synthesis, and Biological Evaluation.

Fibroblast growth factor receptors (FGFRs) play key roles in promoting cancer cell proliferation, differentiation, and migration. However, acquired resistance to FGFR inhibitors has become an emerging challenge in long-term cancer therapies, especially for hepatocellular carcinoma (HCC). Gatekeeper (GK) mutations are the main mechanism of resistance. Herein, we describe the discovery of a series of reversible FGFR inhibitors, particularly for GK mutations with the 2-amino-7-sulfonyl-7 H -pyrrolo[2,3- d ]pyrimidine scaffold. Rational design, optimization, and pharmacokinetic screening provided representative compound 19 with potent FGFR inhibition in vitro, high bioavailability, and an acceptable half-life. GK mutation tolerance was supported by assays against FGFR4V550L and Ba/F3-TEL-FGFR4V550L cells. Moreover, compound 19 exhibited potent antitumor potency in HUH7 xenograft mouse models with no obvious toxicity observed. Compound 19 was identified as a potential candidate for overcoming GK mutations for HCC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app