Add like
Add dislike
Add to saved papers

Albumin-Coated Polycaprolactone (PCL)-Decellularized Extracellular Matrix (dECM) Scaffold for Bone Regeneration.

ACS Applied Bio Materials 2022 November 15
With the emphasis on collagen and hydroxyapatite, the main structural components of bone tissue, synthetic grafts fall short of matching the clinical efficacy of autologous bone grafts. Excluded non-collagenous protein (NCPs) and carbohydrates also participate in critical cell signaling cascades and guide mineral deposition during intermediate stages of bone healing. By mimicking the native fracture repair process, polymeric scaffolds that incorporate calcium-binding moieties present in fibrocartilage can potentially enhance their bioactivity, mineralization, and bone growth. Likewise, coating polymeric fibers with serum albumin is an additional strategy that can impart collagen-like biofunctionality and further increase mineral deposition on the fibrous surface. Here, a combination of electrospun polycaprolactone (PCL) fibers with chondrocyte-derived decellularized extracellular matrix (dECM) and albumin coating were investigated as a fibrocartilage-mimetic scaffold that can serve as a woven bone precursor for bone regeneration. PCL fibrous constructs coated with dECM and albumin are shown to synergistically increase calcium concentration and calcium phosphate (CaP) deposition in a simulated body fluid biomineralization assay. Albumin/dECM coating increased osteoblast proliferation and mineral deposition in culture. In contrast, CaP coating transformed osteoblast bone lining morphology into cuboidal phenotype and arrested their proliferation. Cell sheets of osteoblasts cultured on dECM/albumin/CaP-coated constructs exhibited an increase in calcium deposition and secretion of collagen, osteopontin, osteocalcin, and bone morphogenetic protein. These results highlight the potential of biomolecular coatings to enhance bone-mimetic properties of synthetic nanofibrous scaffolds, stimulate critical protein and mineral deposition, and augment the bone's capacity to heal. Thus, mimicking the intermediate stages of bone regeneration by incorporating calcium-binding moieties may prove to be a useful strategy for improving the clinical outcomes of synthetic bone grafts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app