Add like
Add dislike
Add to saved papers

A Discovery Biotransformation Strategy: Combining In Silico Tools with High-Resolution Mass Spectrometry and Software-Assisted Data Analysis for High-Throughput Metabolism.

Understanding compound metabolism in early drug discovery aids medicinal chemistry in designing molecules with improved safety and ADME properties. While advancements in metabolite prediction brings increasedconfidence, structural decisions require experimental data. In vitro metabolism studies using liquid chromatography and high-resolution mass spectrometry (LC-MS) are generally resource intensive and performed on very few compounds, limiting the chemical space that can be examined.Here, we describe a novel metabolism strategy increasing compound throughput using residual in vitro clearance samples conducted at drug concentrations of 0.5 µM. Analysis by robust UHPLC separation and accurate-mass MS detection ensures major metabolites are identified from a single injection. In silico prediction (parent cLogD) tailors chromatographic conditions, with data-dependent MS/MS targeting predicted metabolites. Software-assisted data mining, structure elucidation and automatic reporting are used.Confidence in the globally-aligned workflow is demonstrated with sixteen marketed drugs. The approach is now implemented routinely across our laboratories. To date, the success rate for identification of at least one major metabolite is 85%. The utility of these data has been demonstrated across multiple projects, allowing earlier medicinal chemistry decisions to increase efficiency and impact of the design-make-test cycle; thus improving the translatability of early in vitro metabolism data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app