Add like
Add dislike
Add to saved papers

New ruthenium complexes containing salicylic acid and derivatives induce triple-negative tumor cell death via the intrinsic apoptotic pathway.

In this work we present the synthesis and characterization of six new ruthenium compounds with general formulae [Ru(L)(dppb)(bipy)]PF6 and [Ru(L)(dppe)2 ]PF6 where L = salicylic acid (Sal), 4-aminosalicylic acid (AmSal) or 2,4-dihydroxybenzoic acid (DiSal), dppb = 1,4-bis(diphenylphosphino)butane, dppe = 1,2-bis(diphenylphosphino)ethane and bipy = 2,2'-bipyridine. The complexes were characterized by elemental analysis, molar conductivity, cyclic voltammetry, NMR, UV-vis and IR spectroscopies, and two by X-ray crystallography. The 31 P{1 H} NMR spectra of the complexes with the general formula [Ru(L)(dppe)2 ]PF6 showed that the phosphorus signals are solvent-dependent. Aprotic solvents, which form strong hydrogen bonds with the complexes, inhibit the free rotation of the salicylic acid-based, modifying the diphosphine cone angles, leading to distortion of the phosphorus signals in the NMR spectra. The cytotoxicity of the complexes was evaluated in MCF-7, MDA-MB-231, SKBR3 human breast tumor cells, and MCF-10 non-tumor cell lines. The complexes with the structural formula [Ru(L)(dppe)2 ]PF6 were the most cytotoxic, and the complex [Ru(AmSal)(dppe)2 ]PF6 with L = 4-aminosalicylic acid ligand was the most selective for the MDA-MB-231 cell line. This complex interacts with the transferrin and induces apoptosis through the intrinsic pathway, as demonstrated by increased levels of proteins involved in apoptotic cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app