Add like
Add dislike
Add to saved papers

Baicalein Inhibits the Progression and Promotes Radiosensitivity of Esophageal Squamous Cell Carcinoma by Targeting HIF-1A.

Purpose: To explore the mechanism of the effect of baicalein on radioresistance of esophageal cancer, and to provide ideas for the treatment of patients with poor radiotherapy effect of esophageal cancer.

Methods: The glycolytic rate assay kit was used to detect the changes in glycolytic metabolism in esophageal cancer cells after treatment with baicalein, and mass spectrometry was used to detect whether baicalein could affect the level of glycolysis-related metabolites in esophageal cancer cells. The binding of baicalein to the target protein was simulated by molecular docking technique, the protein expression level was detected by Western Blot, and the changes in the cell cycle were detected by flow cytometry.

Results: Radiation combined with baicalein could significantly inhibit the proliferation and migration of esophageal cancer cells compared with that of 6 Gy rays alone. The results of the glycolytic rate assay showed that baicalein could inhibit the glycolysis of esophageal cancer cells. Metabonomic studies showed that baicalein could affect the expression levels of glycolysis-related metabolites. The results of network pharmacology showed that baicalein could target several key glycolysis enzymes and glycolysis-related proteins, such as HIF-1A. The results of the WB experiment showed that glycolysis-related proteins and cycle-related proteins were down-regulated after baicalein treatment.

Conclusion: The main mechanism of baicalein inhibiting radiation resistance of esophageal cancer cells is that targeting HIF-1A protein regulates glucose metabolism and then regulates Cyclin D1/CDK4 axis to change the cell cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app