Add like
Add dislike
Add to saved papers

On the design of a compact emergency mechanical ventilator with negative expiratory exit pressure for COVID-19 patients.

The present work deals with the design of a cylinder-piston arrangement to deliver the required tidal volume (TV) of air to the patient through the respiratory tract especially in the setting of severe acute respiratory syndrome corona virus 2 (SARS CoV-2) or corona virus disease (COVID-19). The design ensures that only the desired volume of air is delivered in each breath and a negative pressure is retained at the delivery point in a separate cylinder. The frequency of piston motion is the same as that of the average human respiratory rate (RR). The effect of negative pressure on time of evacuation under the present condition has been verified. The present design provides a compact ventilator unit with a surface area of 0.8 × 0.4 m2 with a minimal power requirement of 116.48 W. An RR of 16 is obtained with a volume flow rate in lit/s by using a twin cylinder arrangement with bore diameter 0.1 m and length 0.4 m. The ratio of inspiration time to expiration time is designed to be 1:2 by controlling the stroke frequency as 16 and piston speed 0.32 m/s. The present design provides promising quantitative information on the design of an automated continuous mechanical ventilator (CMV), which is different from bag mask valve (BMV) operated ventilators, and on preventing and minimising barotrauma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app