Add like
Add dislike
Add to saved papers

Quantitative Analysis of Drag Force for Task-Specific Micromachine at Low Reynolds Numbers.

Micromachines 2022 July 19
Micromotors have spread widely in order to meet the needs of new applications, including cell operation, drug delivery, biosensing, precise surgery and environmental decontamination, due to their small size, low energy consumption and large propelling power, especially the newly designed multifunctional micromotors that combine many extra shape features in one device. Features such as rod-like receptors, dendritic biosensors and ball-like catalyzing enzymes are added to the outer surface of the tubular micromotor during fabrication to perform their special mission. However, the structural optimization of motion performance is still unclear. The main factor restricting the motion performance of the micromotors is the drag forces. The complex geometry of a micromotor makes its dynamic behavior more complicated in a fluid environment. This study aimed to design the optimum structure of tubular micromotors with minimum drag forces and obtain the magnitude of drag forces considering both the internal and external fluids of the micromotors. By using the computational fluid dynamics software Fluent 18.0 (ANSYS), the drag force and the drag coefficient of different conical micromotors were calculated. Moreover, the influence of the Reynolds numbers Re, the semi-cone angle δ and the ratios ξ and η on the drag coefficient was analyzed. The results show the drag force monotonically increased with Reynolds numbers Re and the ratio η. The extreme point of the drag curve is reached when the semi-cone angle δ is 8° and the ratio ξ is 3.846. This work provides theoretical support and guidance for optimizing the design and development of conical micromotors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app