Add like
Add dislike
Add to saved papers

Characterization of hydrocarbon degrading microorganisms from Glycine max and Zea mays phytoremediated crude oil contaminated soil.

Microbe-plant partnership in phytoremediation involves a synergistic interaction that leads to degradation of contaminants. The identification and characterization of these microorganisms is fundamental in environmental management. This study is aimed at investigating the influence of Glycine max and Zea mays on microbial make-up and differentiation of soil bacterial and fungal isolates in crude oil contaminated soil. We employed conventional technique of microbial isolation and gene sequencing to evaluate the microbial composition in crude oil contaminated soil. The microorganisms were isolated from crude oil contaminated soil (0%, 4%, 8%) and were identified using 16S rRNA gene (for bacteria) and Internal Transcribed Spacer (ITS) gene (for fungi). We observed a change in the microbial cell density with respect to treatment conditions implying a shift in microbial dynamics to total hydrocarbon utilizing bacteria as the dominant microbes. The sequence data revealed five bacteria strain; Klebsiella aerogenes strain 77, Klebsiella aerogenes strain UISO178, Salmonella enterica strain ABUH7, Klebsiella aerogenes strain M242 and Enterobacter sp. NCCP-607 and three fungi strains; Galactomyces geotrichum strain CBS, Aspergillus niger strain YMCHA73 and Trichoderma virens isolate A701. Annotation analysis using FGENESB and gene scan revealed proteins involved in various metabolic processes and hydrocarbon utilization. GHOSTKOLA output revealed several genetic elements and pathways such as DnaA, PYG, mrcA, environmental, cellular and genetic information processing and degradation enhancers. Our findings show that G. max and Z. mays in association with bacteria can enhance ecosystem restoration of crude oil contaminated soil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app