Journal Article
Research Support, N.I.H., Intramural
Video-Audio Media
Add like
Add dislike
Add to saved papers

Intravital Subcellular Microscopy of the Mammary Gland.

The mammary gland constitutes a model par excellence for investigating epithelial functions, including tissue remodeling, cell polarity, and secretory mechanisms. During pregnancy, the gland expands from a primitive ductal tree embedded in a fat pad to a highly branched alveolar network primed for the formation and secretion of colostrum and milk. Post-partum, the gland supplies all the nutrients required for neonatal survival, including membrane-coated lipid droplets (LDs), proteins, carbohydrates, ions, and water. Various milk components, including lactose, casein micelles, and skim-milk proteins, are synthesized within the alveolar cells and secreted from vesicles by exocytosis at the apical surface. LDs are transported from sites of synthesis in the rough endoplasmic reticulum to the cell apex, coated with cellular membranes, and secreted by a unique apocrine mechanism. Other preformed constituents, including antibodies and hormones, are transported from the serosal side of the epithelium into milk by transcytosis. These processes are amenable to intravital microscopy because the mammary gland is a skin gland and, therefore, directly accessible to experimental manipulation. In this paper, a facile procedure is described to investigate the kinetics of LD secretion in situ, in real-time, in live anesthetized mice. Boron-dipyrromethene (BODIPY)665/676 or monodansylpentane are used to label the neutral lipid fraction of transgenic mice, which either express soluble EGFP (enhanced green fluorescent protein) in the cytoplasm, or a membrane-targeted peptide fused to either EGFP or tdTomato. The membrane-tagged fusion proteins serve as markers of cell surfaces, and the lipid dyes resolve LDs ≥ 0.7 µm. Time-lapse images can be recorded by standard laser scanning confocal microscopy down to a depth of 15-25 µm or by multiphoton microscopy for imaging deeper in the tissue. The mammary gland may be bathed with pharmacological agents or fluorescent dyes throughout the surgery, providing a platform for acute experimental manipulations as required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app