Add like
Add dislike
Add to saved papers

Ibuprofen molecular aggregation by direct back-face transmission steady-state fluorescence.

Direct back-face transmission steady-state fluorescence was successfully applied to the study of aggregation of ibuprofen and ibuprofenate anion in solution taking advantage of its own fluorescence. The analysis of the experimental data involves the use of the differential reabsorption model to account for re-absorption phenomenon and the closed association model to describe aggregation. The fluorescence quantum yield of ibuprofenate increases when it aggregates in the presence of sodium, but it markedly decreases when 1-butyl-3-methylimidazolium is used as counterion. The proposed methodology allows the accurate determination of the critical aggregation concentrations and the mean aggregation numbers. Results were supported by complementary techniques such as time-resolved fluorescence, 1 H-NMR and small-angle neutron and X-ray scattering. The developed technique constitutes a promising strategy to characterize the aggregation of poorly fluorescent surfactants that aggregates at high concentrations and hence at high absorbance values, conditions in which the most common right-angle configuration for fluorescence acquisition is troublesome due to re-absorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app