Add like
Add dislike
Add to saved papers

Deep Learning for Radiographic Measurement of Femoral Component Subsidence Following Total Hip Arthroplasty.

Femoral component subsidence following total hip arthroplasty (THA) is a worrisome radiographic finding. This study developed and evaluated a deep learning tool to automatically quantify femoral component subsidence between two serial anteroposterior (AP) hip radiographs. The authors' institutional arthroplasty registry was used to retrospectively identify patients who underwent primary THA from 2000 to 2020. A deep learning dynamic U-Net model was trained to automatically segment femur, implant, and magnification markers on a dataset of 500 randomly selected AP hip radiographs from 386 patients with polished tapered cemented femoral stems. An image processing algorithm was then developed to measure subsidence by automatically annotating reference points on the femur and implant, calibrating that with respect to magnification markers. Algorithm and manual subsidence measurements by two independent orthopedic surgeon reviewers in 135 randomly selected patients were compared. The mean, median, and SD of measurement discrepancy between the automatic and manual measurements were 0.6, 0.3, and 0.7 mm, respectively, and did not demonstrate a systematic tendency between human and machine. Automatic and manual measurements were strongly correlated and showed no evidence of significant differences. In contrast to the manual approach, the deep learning tool needs no user input to perform subsidence measurements. Keywords: Total Hip Arthroplasty, Femoral Component Subsidence, Artificial Intelligence, Deep Learning, Semantic Segmentation, Hip, Joints Supplemental material is available for this article. © RSNA, 2022.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app