Add like
Add dislike
Add to saved papers

Trans-cinnamaldehyde protects against phenylephrine-induced cardiomyocyte hypertrophy through the CaMKII/ERK pathway.

BACKGROUND: Trans-cinnamaldehyde (TCA) is one of the main pharmaceutical ingredients of Cinnamomum cassia Presl, which has been shown to have therapeutic effects on a variety of cardiovascular diseases. This study was carried out to characterize and reveal the underlying mechanisms of the protective effects of TCA against cardiac hypertrophy.

METHODS: We used phenylephrine (PE) to induce cardiac hypertrophy and treated with TCA in vivo and in vitro. In neonatal rat cardiomyocytes (NRCMs), RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to identify potential pathways of TCA. Then, the phosphorylation and nuclear localization of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-related kinase (ERK) were detected. In adult mouse cardiomyocytes (AMCMs), calcium transients, calcium sparks, sarcomere shortening and the phosphorylation of several key proteins for calcium handling were evaluated. For mouse in vivo experiments, cardiac hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, and the expression of hypertrophic genes and proteins.

RESULTS: TCA suppressed PE-induced cardiac hypertrophy and the phosphorylation and nuclear localization of CaMKII and ERK in NRCMs. Our data also demonstrate that TCA blocked the hyperphosphorylation of ryanodine receptor type 2 (RyR2) and phospholamban (PLN) and restored Ca2+ handling and sarcomere shortening in AMCMs. Moreover, our data revealed that TCA alleviated PE-induced cardiac hypertrophy in adult mice and downregulated the phosphorylation of CaMKII and ERK.

CONCLUSION: TCA has a protective effect against PE-induced cardiac hypertrophy that may be associated with the inhibition of the CaMKII/ERK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app