Add like
Add dislike
Add to saved papers

Citrullination of adenosine deaminase impairs its binding to dipeptidyl peptidase IV.

Biophysical Chemistry 2022 April 16
The presence of citrullinated adenosine deaminase (ADA) was reported in the synovial fluids of rheumatoid arthritis individuals. This work reports the effects of ADA citrullination on the formation/stabilization of ADA complex with dipeptidyl peptidase IV (DPPIV). The electrophoretic mobility of in vivo citrullinated ADA was diminished compared to the native one. The biosensor binding study demonstrated approximately four-fold lower affinity of both in vivo and in vitro citrullinated ADAs to DPPIV (KD  = 161 ± 51.3 and 171 ± 52.2 nM, respectively) compared with wild ADA (KD  = 38 ± 9.4 nM). These results were confirmed by examining the ADA interaction with DPPIV using size-exclusion chromatography and fluorescence anisotropy methods. The computational modeling of Arg142 → Cit142 modification in ADA showed a local structural rearrangement and a less favorable binding affinity to DPPIV. According to these observations, citrullinated ADA being a possible target triggering autoimmunity hinders also the formation of ADA-DPPIV complex, essential in immune system function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app