Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Ex Vivo and In Vivo Animal Models for Mechanical and Chemical Injuries of Corneal Epithelium.

Corneal injury to the ocular surface, including chemical burn and trauma, may cause severe scarring, symblepharon, corneal limbal stem cells deficiency, and result in a large, persistent corneal epithelial defect. Epithelial defect with the following corneal opacity and peripheral neovascularization result in irreversible visual impairment and hinder future management, especially keratoplasty. Since the animal model can be used as an effective drug development platform, models of corneal injury to the mouse and alkali burn to rabbit corneal epithelium are developed here. New Zealand white rabbit is used in the alkali burn model. Different concentrations of sodium hydroxide can be applied onto the central circular area of the cornea for 30 s under intramuscular and topical anesthesia. After copious isotonic normal saline irrigation, residual loose corneal epithelium was removed with corneal burr deep down to the Bowman's layer within this circular area. Wound healing was documented by fluorescein staining under Cobalt blue light. C57BL/6 mice were used in the traumatic model of murine corneal epithelium. The murine central cornea was marked using a skin punch, 2 mm in diameter, and then debrided by a corneal rust ring remover with a 0.5 mm burr under a stereomicroscope. These models can be prospectively used to validate the therapeutic effect of eye drops or mixed agents such as stem cells, which potentially facilitate corneal epithelial regeneration. By observing corneal opacity, peripheral neovascularization, and conjunctival congestion with stereomicroscope and imaging software, therapeutic effects in these animal models can be monitored.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app