Add like
Add dislike
Add to saved papers

Effect of Structural Fine-Tuning on Chelate Stability and Liver Uptake of Anionic MRI Contrast Agents.

The purpose of this study is to assess the physicochemical properties and MRI diagnostic efficacy of two newly synthesized 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-type Gd chelates, Gd-SucL and Gd-GluL, with an asymmetric α-substituted pendant arm as potential hepatocyte-specific magnetic resonance imaging contrast agents (MRI CAs). Our findings show that fine conformational changes in the chelating arm affect the in vivo pharmacokinetic behavior of the MRI CA, and that a six-membered chelating substituent of Gd-SucL is more advantageous in this system to avoid unwanted interactions with endogenous species. Gd-SucL exhibited a general DOTA-like chelate stability trend, indicating that all chelating arms retain coordination bonding. Finally, the in vivo diagnostic efficacy of highly stable Gd-SucL as a potential hepatocyte-specific MRI CA was evaluated using T 1 -weighted MR imaging on an orthotopic hepatocarcinoma model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app