Add like
Add dislike
Add to saved papers

Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.

Over the past 15 years, optogenetic methods have revolutionized neuroscientific and cell biological research, also in the nematode Caenorhabditis elegans. In this chapter, we give an update about current optogenetic tools and methods to address neuronal activity and inhibition, as well as second messenger signaling, based on microbial rhodopsins. We address channelrhodopsins and variants thereof, which conduct cations or anions, for depolarization and hyperpolarization of the membrane potential. Also, we cover ion pumping rhodopsins, like halorhodopsin, Mac, and Arch. A recent addition to rhodopsin-based optogenetics is voltage imaging tools that allow fluorescent readout of membrane voltage (directly, via fluorescence of the rhodopsin chromophore retinal, or indirectly, via electrochromic FRET). Last, we report on a new addition to the optogenetic toolbox, which is rhodopsin guanylyl cyclases, as well as mutated variants with specificity for cyclic AMP. These can be used to regulate intracellular levels of cGMP and cAMP, which are important second messengers in sensory and other neurons. We further show how they can be combined with cyclic nucleotide-gated channels in two-component optogenetics, for depolarization or hyperpolarization of membrane potential. For all tools, we present protocols for straightforward experimentation to address neuronal activation and inhibition, particularly at the neuromuscular junction, and for combined optogenetic actuation and Ca2+ imaging. We also provide protocols for usage of rhodopsin guanylyl and adenylyl cyclases. Finally, we list a number of points to consider when designing and conducting rhodopsin-based optogenetic experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app