Add like
Add dislike
Add to saved papers

GMEPS: a fast and efficient likelihood approach for genome-wide mediation analysis under extreme phenotype sequencing.

Due to many advantages such as higher statistical power of detecting the association of genetic variants in human disorders and cost saving, extreme phenotype sequencing (EPS) is a rapidly emerging study design in epidemiological and clinical studies investigating how genetic variations associate with complex phenotypes. However, the investigation of the mediation effect of genetic variants on phenotypes is strictly restrictive under the EPS design because existing methods cannot well accommodate the non-random extreme tails sampling process incurred by the EPS design. In this paper, we propose a likelihood approach for testing the mediation effect of genetic variants through continuous and binary mediators on a continuous phenotype under the EPS design (GMEPS). Besides implementing in EPS design, it can also be utilized as a general mediation analysis procedure. Extensive simulations and two real data applications of a genome-wide association study of benign ethnic neutropenia under EPS design and a candidate-gene study of neurocognitive performance in patients with sickle cell disease under random sampling design demonstrate the superiority of GMEPS under the EPS design over widely used mediation analysis procedures, while demonstrating compatible capabilities under the general random sampling framework.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app