Add like
Add dislike
Add to saved papers

Ability of dynamic preload indices to predict fluid responsiveness in a high femoral-to-radial arterial pressure gradient: a retrospective study.

BACKGROUND: Dynamic preload indices may predict fluid responsiveness in end-stage liver disease. However, their usefulness in patients with altered vascular compliance is uncertain. This study is the first to evaluate whether dynamic indices can reliably predict fluid responsiveness in patients undergoing liver transplantation with a high femoral-to-radial arterial pressure gradient (PG).

METHODS: Eighty liver transplant recipients were retrospectively categorized as having a normal (n = 56) or high (n = 24, difference in systolic pressure ≥ 10 mmHg and/or mean pressure ≥ 5 mmHg) femoral-to-radial arterial PG, measured immediately after radial and femoral arterial cannulation. The ability of dynamic preload indices (stroke volume variation, pulse pressure variation [PPV], pleth variability index) to predict fluid responsiveness was assessed before the surgery. Fluid replacement of 500 ml of crystalloid solution was performed over 15 min. Fluid responsiveness was defined as ≥ 15% increase in the stroke volume index. The area under the receiver-operating characteristic curve (AUC) indicated the prediction of fluid responsiveness.

RESULTS: Fourteen patients in the normal, and eight in the high PG group were fluid responders. The AUCs for PPV in the normal, high PG groups and total patients were 0.702 (95% confidence interval [CI] 0.553-0.851, P = 0.008), 0.633 (95% CI 0.384-0.881, P = 0.295) and 0.667 (95% CI 0.537-0.798, P = 0.012), respectively. No other index predicted fluid responsiveness.

CONCLUSIONS: PPV can be used as a dynamic index of fluid responsiveness in patients with end-stage liver disease but not in patients with altered vascular compliance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app