Add like
Add dislike
Add to saved papers

MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG.

Oncogene 2022 Februrary 5
MicroRNAs play significant roles in various malignancies, with breast cancer (BC) being no exception. Consequently, we explored the functional mechanism of miR-135 in the progression of BC. In total, 55 pairs of BC and matched adjacent normal tissues were clinically collected from patients, followed by quantification of miR-135 and zinc finger protein 217 (ZNF217) expression patterns in BC tissues and cells. Accordingly, high ZNF217 expression and low miR-135 expression levels were identified in BC tissues and cells. Subsequently, the expressions of miR-135 and ZNF217 were altered to evaluate their effects on BC cell migration, invasion and EMT initiation. It was found that when ZNF217 was silenced or miR-135 was elevated, BC cell malignant behaviors were significantly inhibited, which was reproduced in nude mice for in vivo evidence. Furthermore, dual-luciferase reporter gene assay revealed the presence of direct binding between miR-135 and ZNF217. Subsequent co-immunoprecipitation, methylated-RNA binding protein immunoprecipitation and photoactivatable ribonucleoside enhanced-crosslinking and immunoprecipitation assays further revealed that ZNF217 could upregulate NANOG by reducing N6-methyladenosine levels via methyltransferase-like 13 (METTL3). Collectively, our findings highlighted the role of the miR-135/ZNF217/METTL3/NANOG axis in the progression of BC, emphasizing potential therapeutic targets ZNF217 silencing and miR-135 upregulation in preventing or treating BC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app