Journal Article
Review
Add like
Add dislike
Add to saved papers

Stochastic Vector Techniques in Ground-State Electronic Structure.

We review a suite of stochastic vector computational approaches for studying the electronic structure of extended condensed matter systems. These techniques help reduce algorithmic complexity, facilitate efficient parallelization, simplify computational tasks, accelerate calculations, and diminish memory requirements. While their scope is vast, we limit our study to ground-state and finite temperature density functional theory (DFT) and second-order perturbation theory. More advanced topics, such as quasiparticle (charge) and optical (neutral) excitations and higher-order processes, are covered elsewhere. We start by explaining how to use stochastic vectors in computations, characterizing the associated statistical errors. Next, we show how to estimate the electron density in DFT and discuss highly effective techniques to reduce statistical errors. Finally, we review the use of stochastic vector techniques for calculating correlation energies within the second-order Møller-Plesset perturbation theory and its finite temperature variational form. Example calculation results are presented and used to demonstrate the efficacy of the methods. Expected final online publication date for the Annual Review of Physical Chemistry , Volume 73 is April 2022. Please see https://www.annualreviews.org/page/journal/pubdates for revised estimates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app