Add like
Add dislike
Add to saved papers

Ehlers-Danlos/myopathy overlap syndrome caused by a large de novo deletion in COL12A1.

Autosomal dominant and recessive mutations in COL12A1 cause the Ehlers-Danlos/myopathy overlap syndrome. Here, we describe a boy with fetal hypokinesia, severe neonatal weakness, striking hyperlaxity, high arched palate, retrognathia, club feet, and pectus excavatum. His motor development was initially delayed but muscle strength improved with time while hyperlaxity remained very severe causing recurrent joint dislocations. Using trio exome sequencing and a copy number variation (CNV) analysis tool, we identified an in-frame de novo heterozygous deletion of the exons 45 to 54 in the COL12A1 gene. Collagen XII immunostaining on cultured skin fibroblasts demonstrated intracellular retention of collagen XII, supporting the pathogenicity of the deletion. The phenotype of our patient is slightly more severe than other cases with dominantly acting mutations, notably with the presence of fetal hypokinesia. This case highlights the importance of CNVs analysis in the COL12A1 gene in patients with a phenotype suggesting Ehlers-Danlos/myopathy overlap syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app