Add like
Add dislike
Add to saved papers

Development of a cellulose-based prosthetic mesh for pelvic organ prolapse treatment: In vivo long-term evaluation in an ewe vagina model.

Materials today. Bio. 2021 September
The use of vaginal surgical mesh to treat pelvic organ prolapse (POP) has been associated with high rates of mesh-related complications. In the present study, we prepared new kinds of meshes based on bacterial cellulose (BC) and collagen-coated BC (BCCOL) using a laser cutting method and perforation technique. The mechanical properties of pre-implanted BC meshes, including breaking strength, suture strength and rigidity, were equal to or exceeded those of available clinically used polypropylene meshes. An in vitro cellular assay revealed that BCCOL meshes exhibited enhanced biocompatibility by increasing collagen secretion and cell adhesion. Both BC and BCCOL meshes only caused weak inflammation and were surrounded by newly formed connective tissue composed of type I collagen after implantation in a rabbit subcutaneous model for one week, demonstrating that the novel mesh is fully biocompatible and can integrate into surrounding tissues. Furthermore, a long-term (ninety days) ewe vaginal implantation model was used to evaluate foreign body reactions and suitability of BC and BCCOL meshes as vaginal meshes. The results showed that the tissue surrounding the BC meshes returned to its original physiology as muscle tissue, indicating the excellent integration of BC meshes into the surrounding tissues without triggering severe local inflammatory response post-implantation. The collagen coating appeared to induce a chronic inflammatory response due to glutaraldehyde remnants. The present exploratory research demonstrated that the developed BC mesh might be a suitable candidate for treating POP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app