Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Feasibility study on transcutaneous auricular vagus nerve stimulation using millimeter waves.

Objective . Electrical stimulation of the auricular vagus nerve is a non-invasive neuromodulation technique that has been used for various conditions, including depression, epilepsy, headaches, and cerebral ischemia. However, unwanted non-vagal nerve stimulations can occur because of diffused stimulations. The objective of this study is to develop a region-specific non-invasive vagus nerve stimulation (VNS) technique using the millimeter wave (MMW) as a stimulus for the auricular branch of the vagus nerve (ABVN). Approach . A numerical simulation was conducted to ascertain whether the MMW could excite the ABVN in the human outer-ear with a millimeter-scale spatial resolution. Additionally, MMW-induced neuronal responses in seven mice were evaluated. Transcutaneous auricular VNS (ta-VNS) was applied to the cymba conchae innervated by the AVBN using a 60-GHz continuous wave (CW). As a control, the auricle's exterior margin was stimulated and referred to as transcutaneous auricular non-vagus nerve stimulation (ta-nonVNS). During stimulation, the local field potential (LFP) in the nucleus tractus solitarii (NTS), an afferent vagal projection site, was recorded simultaneously. Main results . The ta-VNS with a stimulus level of 13 dBm showed a significant increase in the LFP power in the NTS. The mean increases in power (n = 7) in the gamma high and gamma very high bands were 8.6 ± 2.0% and 18.2 ± 5.9%, respectively. However, the ta-nonVNS with a stimulus level of 13 dBm showed a significant decrease in the LFP power in the NTS. The mean decreases in power in the beta and gamma low bands were 11.0 ± 4.4% and 10.8 ± 2.8%, respectively. These findings suggested that MMW stimulation clearly induced a different response according to the presence of ABVN. Significance . Selective auricular VNS is feasible using the MMW. This study provides the basis for the development of a new clinical treatment option using the stimulation of the ta-VNS with a square millimeter spatial resolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app