Add like
Add dislike
Add to saved papers

The Effects of Electronegativity of X and Hybridization of C on the X-C⋅⋅⋅O Interactions: A Statistical Analysis on Tetrel Bonding.

ChemPlusChem 2021 August
Cone and distance-cone corrected statistical analyses have been performed on X-C⋅⋅⋅O (X=H, B, C, N, O and F; the C atom is sp2 and sp3 hybridized) tetrel bonds. The sp3 -C and sp2 -C prefer to form the interactions through σ-hole (∠XCO≈180°) and π-hole (∠XCO≈90°), respectively. With the increase in electronegativity of X, the preference for the particular angles of the respective geometries increases and the C⋅⋅⋅O distance becomes shorter. The angular preference is found to be more prominent in the cases of π-hole interactions than that in the σ-hole interactions. A similar distance-cone corrected statistical analysis on O=C⋅⋅⋅O interaction also suggests that the preferred ∠OCO angle is ∼90° and the preferred C⋅⋅⋅O distance is around the sum of van der Waals radii (3.22 Å) of the C and O atoms. However, a cone-corrected statistical analysis on X-Si⋅⋅⋅O interactions suggests that the preference for linearity in this case is much higher than that for the X-C⋅⋅⋅O σ-hole interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app