Add like
Add dislike
Add to saved papers

Schizophrenia risk candidate protein ZNF804A interacts with STAT2 and influences interferon-mediated gene transcription in mammalian cells.

Previously evidence was presented that the single-nucleotide polymorphism rs1344706 located in an intronic region of the ZNF804A gene is associated with reduced transcript levels in fetal brains. This genetic variation in the gene encoding the zinc-finger protein ZNF804A is associated with schizophrenia (SZ) and bipolar disorder. Currently, the molecular and cellular function of ZNF804A is unclear. Here, we generated a high-confidence protein-protein interaction (PPI) network for ZNF804A using a combination of yeast two-hybrid and bioluminescence-based PPI detection assays, directly linking 12 proteins to the disease-associated target protein. Among the top hits was the signal transducer and activator of transcription 2 (STAT2), an interferon-regulated transcription factor. Detailed mechanistic studies revealed that STAT2 binds to the unstructured N-terminus of ZNF804A. This interaction is mediated by multiple short amino acid motifs in ZNF804A but not by the conserved C2H2 zinc-finger domain, which is also located at the N-terminus. Interestingly, investigations in HEK293 cells demonstrated that ZNF804A and STAT2 both co-translocate from the cytoplasm into the nucleus upon interferon (IFN) treatment. Furthermore, a concentration-dependent effect of ZNF804A overproduction on STAT2-mediated gene expression was observed using a luciferase reporter, which is under the control of an IFN-stimulated response element (ISRE). Together these results indicate the formation of ZNF804A:STAT2 protein complex and its translocation from the cytoplasm into the nucleus upon IFN stimulation, suggesting that it may function as a signal transducer that activates IFN-mediated gene expression programs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app