Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Analysis of the current-density distribution from a tapered, gelled-pad external cardiac pacing electrode.

We have designed a high-impedance (5000 omega-cm), tapered, gelled-pad, external cardiac pacing electrode that limits the migration of charges to the perimeter of a circular electrode and produces a more uniform current-density distribution than external cardiac pacing electrodes in clinical use. A computer simulation was developed that uses cylindrical coordinates to analyze the current-density distribution at the interface between the electrode and human tissue. Our computer simulation analyzed 32 different electrodes, and the results showed that the gelled-pad thickness, the gelled-pad taper, and the radius of the conducting disk were not significant parameters in determining the current-density distributions for low-resistivity electrodes. Those parameters were, however, significant for high-resistivity electrodes. We defined the optimum resistivity as that at which the tapered, gelled-pad electrode produces the most uniform current-density distribution and delivers the most current to human tissue. When evaluating electrodes at the optimum resistivity, we determined that the peak current density of the tapered, gelled-pad electrode was 50% lower than that of the clinically available electrodes, while delivering 58% more current to the human tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app