Add like
Add dislike
Add to saved papers

Lactucin induces apoptosis through reactive oxygen species-mediated BCL-2 and CFLAR L downregulation in Caki-1 cells.

Genes & Genomics 2021 July 25
BACKGROUND: Lactucin, a naturally occurring active sesquiterpene lactone, is abundantly found in chicory and romaine lettuce. A recent study reported that lactucin could induce apoptosis in leukemia cells. However, its cytotoxicity and potential molecular mechanisms underlying cancer cell death remain unclear.

OBJECTIVE: Therefore, in this study, we aimed to investigate the direct effect and underlying mechanism of action of lactucin on renal cancer cells.

METHODS: MTT assay and flow cytometry were performed to evaluate the rate of cell proliferation and apoptosis, respectively. Western blotting, reverse transcription polymerase chain reaction, and protein stability analyses were performed to analyze the effect of lactucin on the expression of apoptosis-related proteins such as B-cell lymphoma 2 (BCL-2) and CFLAR (CASP8 and FADD like apoptosis regulator) long isoform (CFLARL ) in Caki-1 human renal cancer cells. In addition, reactive oxygen species (ROS) generation was evaluated using flow cytometry.

RESULTS: Lactucin treatment induced apoptosis in Caki-1 cells in a dose-dependent manner via activation of the caspase pathway. It downregulated BCL-2 and CFLARL expression levels by suppressing BCL-2 transcription and CFLARL protein stability, respectively. Pretreatment with N-acetyl-1-cysteine, a ROS scavenger, attenuated the lactucin-induced apoptosis and restored the BCL-2 and CFLARL expression to basal levels. Lactucin-facilitated BCL-2 downregulation was regulated at the transcriptional level through the inactivation of the NF-κB pathway.

CONCLUSIONS: Our study is the first to demonstrate that lactucin-induced apoptosis is mediated by ROS production, which in turn activates the caspase-dependent apoptotic pathway by inhibiting BCL-2 and CFLARL expression in Caki-1 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app