Add like
Add dislike
Add to saved papers

Coumarin based thiosemicarbazones as effective chemosensors for fluoride ion detection.

Anion sensing have attained immense importance as these charged ions are prevailing in agriculture industry and in heavy industry and therefore in the environment around us, chemosensors are commencing to claim several applications as their role is being better perceived day by day. In the current study, coumarin based thiosemicarbazone R-1 (phenyl moiety) and R-2 (benzyl moiety) were synthesized. It was observed that there were variations in the sensing patterns of compound bearing benzyl group, as compared to the simple phenyl group bearing receptor. Different techniques were used to confirm the interaction of coumarin based receptors with anions. These techniques included naked-eye test, UV-visible, 1H NMR, and fluorescence spectroscopic techniques. The synthesized receptors showed selectivity for fluoride ions. Benesi-Hildebrand equation was employed for determining the detection limits and binding constants values. The synthesized receptors were employed as efficient chemosensors in real life samples and satisfactory results were obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app